System of Equations Calculator (2024)

There are many different ways to solve a system of linear equations. Let's briefly describe a few of the most common methods.

1. Substitution

The first method that students are taught, and the most universal method, works by choosing one of the equations, picking one of the variables in it, and making that variable the subject of that equation. Then, we use this rearranged equation and substitute it for every time that variable appears in the other equations. This way, those other equations now have one variable less, which makes them easier to solve.

For example, if we have an equation 2x + 3y = 6 and want to get x from it, then we start by getting rid of everything that doesn't contain x from the left-hand side. To do this, we have to subtract 3y from both sides (because we have that expression on the left). This means that the left side will be 2x + 3y - 3y, which is simply 2x, and the right side will be 6 - 3y. In other words, we have transformed our equation into 2x = 6 - 3y.

Since we want to get x, and not 2x, we still need to get rid of the 2. To do this, we divide both sides by 2. This way, on the left, we get (2x) / 2, which is just x, and, on the right, we have (6 - 3y) / 2, which is 3 - 1.5y. All in all, we obtained x = 3 - 1.5y, and we can use this new formula to substitute 3 - 1.5y in for every x in the other equations.

2. Elimination of variables

Solving systems of equations by elimination means that we're trying to reduce the number of variables in some of the equations to make them easier to solve. To do this, we start by transforming two equations so that they look similar. To be precise, we want to make the coefficient (the number next to a variable) of one of the equations variables the opposite of the coefficient of the same variable in another equation. We then add the two equations to obtain a new one, which doesn't have that variable, and so it is easier to calculate.

For example, if we have a system of equations,

2x + 3y = 6, and

4x - y = 3,

then we can try to make the coefficient of x in the first equation to be the opposite of the coefficient in the second equation. In our case, this means that we want to transform the 2 into the opposite of 4, which is -4. To do this, we need to multiply both sides of the first equation by -2, since 2 × (-2) = -4. This changes the first equation into

2x × (-2) + 3y × (-2) = 6 × (-2),

which is:

-4x - 6y = -12.

Now we can add this equation to the second one (the 4x - y = 3) by adding the left side to the left side and the right to the right. This gives

4x - y + (-4x - 6y) = 3 + (-12),

which is:

-7y = -9.

We've obtained a new equation with just one variable, which means that we can easily solve y. We can then substitute that number into either of the original equations to get x.

3. Gaussian elimination method

This is the method used by our system of equations calculator. Named after a German mathematician Johann Gauss, it is an algorithmic extension of the elimination method presented above. In the case of just two equations, it is exactly the same thing. However, solving systems of equations by regular elimination gets trickier and trickier with more and more equations and variables. That's where the Gaussian elimination method comes in.

Let's say that we have four equations with four variables. To find the solution to our system, we want to try to get the values of our variables one by one by eliminating all the other consecutively. To do this, we take the first equation and the first of the variables. We use its coefficient to eliminate all the occurrences of that particular variable in the other three equations, just as we did in the regular elimination. This way, we are left with the first equation the same as it was and three equations, now each with only three variables.

We now look at the first equation, give it a thumbs-up, and leave it as it is until the very end. We repeat the process for the other three equations. In other words, we take the second variable and its coefficient from the second equation to eliminate all occurrences of that variable in the last two equations. This leaves us with the first equation having four variables, the second having three, and the last two having only two variables.

Next, we declare the second equation to be nice and pretty and leave it be. We move on to the two remaining equations and take the third variable and its coefficient in the third equation to eliminate that variable from the fourth equality.

In the end, we obtain a system of four equations, in which the first has four variables, the second has three, the third has two, and the last has only one. This means that we can easily get the value of the fourth variable from the fourth equation (since it has no other variables). We then substitute that value to the third equation and get the value of the third variable (since it now has no other variables), and so on.

4. Graphical representation

Arguably the least used method, but a method nonetheless. It takes each of the equations in our system and translates them to a function. The points on the graph of such a function correspond to the coordinates that satisfy that equation. Therefore, if we want to solve a system of linear equations, then it is enough to find all the points where the line cross on the graph, i.e., the coordinates that satisfy all of the equations.

It can be, however, tricky. If we have just two equations and two variables, then the functions are lines on a two-dimensional plane. Therefore, we just need to find the point where those two lines cross.

For three variables, the functions are now in a three-dimensional space, and are no longer lines but planes. This means that we would have to draw three planes (which is tricky in itself) and then also find where those planes cross. And, if you think that's difficult, try to imagine four variables and four dimensions. If it comes to you naturally, please contact us, and we'll direct you to the nearest Nobel prize-type project or a neurologist for a thorough head check.

🙋 By describing them using the slope-intercept form, you can easily find the intersection between two lines. Read more about it in our slope intercept form calculator.

5. Cramer's rule

A fairly easy and very straightforward way to solve a system of linear equations. It does, however, require a good understanding of matrices and their determinants. As an encouragement, let us mention that it doesn't need any substitution, no playing around with the equations, it's just the good old basic arithmetics. For example, for a system of three equations with three variables, we plug in the coefficients from those equations to form four three-by-three matrices and calculate their determinants (what is a determinant?). We finish by dividing the appropriate values that we've just obtained to get the final solution.

System of Equations Calculator (2024)

FAQs

How to find out how many solutions a system of equations has? ›

A system of two equations can be classified as follows: If the slopes are the same but the y-intercepts are different, the system has no solution. If the slopes are different, the system has one solution. If the slopes are the same and the y-intercepts are the same, the system has infinitely many solutions.

How do you find the answer to a system of equations? ›

Solving systems of equations by substitution follows three basic steps. Step 1: Solve one equation for one of the variables. Step 2: Substitute this expression into the other equation, and solve for the missing variable. Step 3: Substitute this answer into one of the equations in order to solve for the other variable.

What is the easiest method to solve systems of equations? ›

The Matrix method is the easiest way to solve a set of linear equations, because it is straightforward and a step-by-step method, and it boils down to the same thing as the elimination method that most people are familiar with.

How to tell if a system of equations has no solution without a graph? ›

The system of equations has no solution if there is no point at which all of the functions intersect. 2) Algebraically: Solve the system algebraically via substitution or elimination and see if that leads to a false equation i.e. a contradiction, such as 0 = 2 (if so, the system has no solution).

How to tell if a system of equations has no solution or infinitely many? ›

We can identify which case it is by looking at our results. If we end up with the same term on both sides of the equal sign, such as 4 = 4 or 4x = 4x, then we have infinite solutions. If we end up with different numbers on either side of the equal sign, as in 4 = 5, then we have no solutions.

What are the 3 methods of solving systems of equations? ›

There are three ways to solve a system of linear equations: graphing, substitution, and elimination. The solution to a system of linear equations is the ordered pair (or pairs) that satisfies all equations in the system. The solution is the ordered pair(s) common to all lines in the system when the lines are graphed.

What are the 4 steps to solving a system of equations? ›

How to solve a system of equations by elimination.
  1. Write both equations in standard form. ...
  2. Make the coefficients of one variable opposites. ...
  3. Add the equations resulting from Step 2 to eliminate one variable.
  4. Solve for the remaining variable.
  5. Substitute the solution from Step 4 into one of the original equations.

What is the best way to teach systems of equations? ›

Graphing. One of the best ways for students to solve systems of equations is by graphing them. If students are able to graph all of the equations in the system, they will be equipped to solve for the different variables.

Can you use a TI 84 to solve a system of equations? ›

To solve a system of linear equations using a graph on the TI-84 Plus C Silver Edition, follow the example below. The purpose is to solve a system of two equations and two unknowns. Example: Using a graph, find the solution for the equations y = 2x + 7 and y = -3x - 8. 1) Press [Y=] to access the Y= editor.

Can you use graphing to solve system of equations? ›

To solve a system of linear equations graphically we graph both equations in the same coordinate system. The solution to the system will be in the point where the two lines intersect.

How to determine if a system has 0, 1 or infinite solutions? ›

If you get a unique solution for each variable, there is one solution. If you get a contradiction like 0 = 1, then there is no solution. If you get an equation that is always true, such as 0 = 0, then there are infinite solutions.

How many solutions can a system of 3 equations have? ›

An infinite number of solutions can result from several situations. The three planes could be the same, so that a solution to one equation will be the solution to the other two equations. All three equations could be different but they intersect on a line, which has infinite solutions.

Top Articles
Latest Posts
Article information

Author: Velia Krajcik

Last Updated:

Views: 5853

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Velia Krajcik

Birthday: 1996-07-27

Address: 520 Balistreri Mount, South Armand, OR 60528

Phone: +466880739437

Job: Future Retail Associate

Hobby: Polo, Scouting, Worldbuilding, Cosplaying, Photography, Rowing, Nordic skating

Introduction: My name is Velia Krajcik, I am a handsome, clean, lucky, gleaming, magnificent, proud, glorious person who loves writing and wants to share my knowledge and understanding with you.